159 research outputs found

    Single-particle Excitation Spectra of C60_{60} Molecules and Monolayers

    Full text link
    In this paper we present calculations of single-particle excitation spectra of neutral and three-electron-doped Hubbard C60_{60} molecules and monolayers from large-scale quantum Monte Carlo simulations and cluster perturbation theory. By a comparison to experimental photoemission, inverse photoemission, and angle-resolved photoemission data, we estimate the intermolecular hopping integrals and the C60_{60} molecular orientation angle, finding agreement with recent X-ray photoelectron diffraction (XPD) experiments. Our results demonstrate that a simple effective Hubbard model, with intermediate coupling, U=4tU=4t, provides a reasonable basis for modeling the properties of C60_{60} compounds.Comment: 6 page

    The s=1/2s=1/2 Antiferromagnetic Heisenberg Model on Fullerene-Type Symmetry Clusters

    Get PDF
    The si=1/2s_{i}={1/2} nearest neighbor antiferromagnetic Heisenberg model is considered for spins sitting on the vertices of clusters with the connectivity of fullerene molecules and a number of sites nn ranging from 24 to 32. Using the permutational and spin inversion symmetries of the Hamiltonian the low energy spectrum is calculated for all the irreducible representations of the symmetry group of each cluster. Frustration and connectivity result in non-trivial low energy properties, with the lowest excited states being singlets except for n=28n=28. Same hexagon and same pentagon correlations are the most effective in the minimization of the energy, with the n=32D3hn=32-D_{3h} symmetry cluster having an unusually strong singlet intra-pentagon correlation. The magnetization in a field shows no discontinuities unlike the icosahedral IhI_h fullerene clusters, but only plateaux with the most pronounced for n=28n=28. The spatial symmetry as well as the connectivity of the clusters appear to be important for the determination of their magnetic properties.Comment: Extended to include low energy spectra, correlation functions and magnetization data of clusters up to 32 site

    Electron-Phonon Interactions in C28_{28}-derived Molecular Solids

    Full text link
    We present {\it ab initio} density-functional calculations of molecular solids formed from C28_{28}-derived closed-shell fullerenes. Solid C28_{28}H4_4 is found to bind weakly and exhibits many of the electronic structure features of solid C60_{60} with an enhanced electron-phonon interaction potential. We show that chemical doping of this structure is feasible, albeit more restrictive than its C60_{60} counterpart, with an estimated superconducting transition temperature exceeding those of the alkali-doped C60_{60} solids.Comment: Lower quality postscript file for Figure 1 is used in the manuscript in order to meet submission quota for pre-print server. Higher quality postscript file available from author: [email protected] This article has been updated to reflect changes incorporated during the peer review process. It is published in PRB 70, 140504(R) 200

    Effect of Geometric Singularities on Plasma Separation Performance in Cascade Zweifach-Fung Bifurcations

    Get PDF
    Series of different geometric singularities (extractions) were integrated and characterized regarding their enhancement of blood plasma separation performance of cascade Zweifach-Fung bifurcations. Flow fields and particle trajectories evolving in geometric perturbations were studied by Computational Fluid Dynamics (CFD) simulation and the model was verified experimentally also. The development of cell-depleted layer near the channel walls due to lift and shear forces were analyzed considering the applied flow rates and the geometric variation of singularities. An optimal flow rate was defined to avoid cell recirculation in the extractions to be deteriorating purity of the proposed plasma. The branch-to-branch development of the cell-depleted layer thickness was studied to prove the improvement of the separation technique due to the integrated inertial subsystems. The separation efficiencies of different geometries were defined and calculated and the optimal singularity shape was selected for further development the proposed Zweifach-Fung effect driven plasma separation system

    Metallicity and conductivity crossover in white light illuminated CH3_3NH3_3PbI3_3 perovskite

    Full text link
    The intrinsic d.c. electrical resistivity (ρ\rho) - measurable on single crystals only - is often the quantity first revealing the properties of a given material. In the case of CH3_3NH3_3PbI3_3 perovskite measuring ρ\rho under white light illumination provides insight into the coexistence of extended and shallow localized states (0.1 eV below the conduction band). The former ones dominate the electrical conduction while the latter, coming from neutral defects, serve as a long-lifetime charge carrier reservoir accessible for charge transport by thermal excitation. Remarkably, in the best crystals the electrical resistivity shows a metallic behaviour under illumination up to room temperature, giving a new dimension to the material in basic physical studies

    Lattice-gas model for alkali-metal fullerides: face-centered-cubic structure

    Full text link
    A lattice-gas model is suggested for describing the ordering phenomena in alkali-metal fullerides of face-centered-cubic structure assuming the electric charge of alkali ions residing in either octahedral or tetrahedral interstitial sites is completely screened by the first-neighbor C_60 molecules. This approximation allows us to derive an effective ion-ion interaction. The van der Waals interaction between the ion and C_60 molecule is characterized by introducing an additional energy at the tetrahedral sites. This model is investigated by using a three-sublattice mean-field approximation and a simple cluster-variation method. The analysis shows a large variety of phase diagrams when changing the site energy parameter.Comment: 10 twocolumn pages (REVTEX) including 12 PS figure

    Detection by NMR of a "local spin-gap" in quenched CsC60

    Full text link
    We present a 13C and 133Cs NMR investigation of the CsC60 cubic quenched phase. Previous ESR measurements suggest that this phase is metallic, but NMR reveals contrasting electronic behavior on the local scale. The 13C spin-lattice relaxation time (T1) exhibits a typical metallic behavior down to 50 K, but indicates that a partial spin-gap opens for T<50 K. Unexpectedly, 133Cs NMR shows that there are two inequivalent Cs sites. For one of these sites, the NMR shift and (T1T)^{-1} follow an activated law, confirming the existence of a spin-gap. We ascribe this spin-gap to the occurrence of localized spin-singlets on a small fraction of the C60 molecules.Comment: 4 figure
    corecore